pc# dpc# gunfolds.estimation.pc.dpc(data, pval=0.05)[source]# Parameters: data – pval (float) – Returns: Return type: fdr# gunfolds.estimation.pc.fdr(alpha, pvalues)[source]# Parameters: alpha – pvalues – Returns: Return type: fdrCutoff# gunfolds.estimation.pc.fdrCutoff(alpha, pvalues)[source]# Parameters: alpha – pvalues – Returns: Return type: fdrQ# gunfolds.estimation.pc.fdrQ(alpha, pvalues)[source]# Parameters: alpha – pvalues – Returns: Return type: independent# gunfolds.estimation.pc.independent(y, X, pval=0.05)[source]# Parameters: y – X – pval (float) – Returns: Return type: independent_# gunfolds.estimation.pc.independent_(x, y, alpha=0.05)[source]# Parameters: x – y – alpha (float) – Returns: Return type: kernel# gunfolds.estimation.pc.kernel(z)[source]# Parameters: z – Returns: Return type: moment22# gunfolds.estimation.pc.moment22(x, y)[source]# Parameters: x – y – Returns: Return type: np_fisherZ# gunfolds.estimation.pc.np_fisherZ(x, y, r)[source]# Parameters: x – y – r – Returns: Return type: residuals_# gunfolds.estimation.pc.residuals_(x, y, z)[source]# Parameters: x – y – z – Returns: Return type: