$\vec{w}_{k+1} = \vec{w}_k + l_k \vec{x}_k$
$l_k \widetilde{\vec{w}}^T\vec{x}_k > 0$
$\vec{w}_{k+1} - \alpha \widetilde{\vec{w}} = (\vec{w}_k - \alpha \widetilde{\vec{w}}) + l_k \vec{x}_k$
$\|\vec{w}_{k+1} - \alpha \widetilde{\vec{w}}\|^2 = \|(\vec{w}_k - \alpha \widetilde{\vec{w}}) + l_k \vec{x}_k\|^2$
$\|\vec{w}_{k+1} - \alpha \widetilde{\vec{w}}\|^2 = \|\vec{w}_k - \alpha \widetilde{\vec{w}}\|^2 + 2(\vec{w}_k - \alpha \widetilde{\vec{w}})^T\vec{x}_kl_k + \|l_k \vec{x}_k\|^2$
$\|\vec{w}_{k+1} - \alpha \widetilde{\vec{w}}\|^2 = \|\vec{w}_k - \alpha \widetilde{\vec{w}}\|^2 + 2\vec{w}_k^T\vec{x}_kl_k - 2\alpha \widetilde{\vec{w}}^T\vec{x}_kl_k + \|l_k \vec{x}_k\|^2$
$\vec{w}_{k}^Tl_k \vec{x}_k \le 0$ since $\vec{x}_k$ was misclassified
$\|\vec{w}_{k+1} - \alpha \widetilde{\vec{w}}\|^2 \le \|\vec{w}_k - \alpha \widetilde{\vec{w}}\|^2 - 2 \alpha \widetilde{\vec{w}}^Tl_k \vec{x}_k + \|l_k \vec{x}_k\|^2$