# | date | topic | description |
---|---|---|---|
1 | 25-Aug-2025 | Introduction | |
2 | 27-Aug-2025 | Foundations of learning | Drop/Add |
3 | 01-Sep-2025 | Labor Day Holiday | Holiday |
4 | 03-Sep-2025 | Linear algebra (self-recap) | HW1 |
5 | 08-Sep-2025 | PAC learnability | |
6 | 10-Sep-2025 | Linear learning models | |
7 | 15-Sep-2025 | Principal Component Analysis | Project ideas |
8 | 17-Sep-2025 | Curse of Dimensionality | |
9 | 22-Sep-2025 | Bayesian Decision Theory | HW2, HW1 due |
10 | 24-Sep-2025 | Parameter estimation: MLE | |
11 | 29-Sep-2025 | Parameter estimation: MAP & NB | finalize teams |
12 | 01-Oct-2025 | Logistic Regression | |
13 | 06-Oct-2025 | Kernel Density Estimation | |
14 | 08-Oct-2025 | Support Vector Machines | HW3, HW2 due |
15 | 13-Oct-2025 | * Midterm | Exam |
16 | 15-Oct-2025 | Matrix Factorization | |
17 | 20-Oct-2025 | * Mid-point projects checkpoint | * |
18 | 22-Oct-2025 | k-means clustering |
# | date | topic | description |
---|---|---|---|
19 | 27-Oct-2025 | Expectation Maximization | |
20 | 29-Oct-2025 | Stochastic Gradient Descent | HW4, HW3 due |
21 | 03-Nov-2025 | Automatic Differentiation | |
22 | 05-Nov-2025 | Nonlinear embedding approaches | |
23 | 10-Nov-2025 | Model comparison I | |
24 | 12-Nov-2025 | Model comparison II | HW5, HW4 due |
25 | 17-Nov-2025 | Model Calibration | |
26 | 19-Nov-2025 | Convolutional Neural Networks | |
27 | 24-Nov-2025 | Thanksgiving Break | Holiday |
28 | 26-Nov-2025 | Thanksgiving Break | Holiday |
29 | 01-Dec-2025 | Word Embedding | |
30 | 03-Dec-2025 | * Project Final Presentations | HW5 due, P |
31 | 08-Dec-2025 | Extra prep day | Classes End |
32 | 10-Dec-2025 | * Final Exam | Exam |
34 | 17-Dec-2025 | Project Reports | due |
35 | 19-Dec-2025 | Grades due 5 p.m. |
The Realizability Assumption: There exists $h^* \in {\cal H}$ s.t. $L_{{\cal D}, f}(h^*)=0$. This implies: with probability 1 over random samples $S\sim {\cal D}$ labeled by $f$, we have $L_S(h^*)=0$
The i.i.d. Assumption: Samples in the training set are independent and identically distributed. Denoted as $S\sim {\cal D}^m$
Failure is when $L_{({\cal D}, f)}>\epsilon$
Success is when $L_{({\cal D}, f)}\le \epsilon$
The Realizability Assumption: There exists $h^* \in {\cal H} s.t. L_{{\cal D}, f}(h^*)=0$. This implies: with probability 1 over random samples $S\sim {\cal D}$ labeled by $f$, we have $L_S(h^*)=0$Means $L_S(h_S) = 0$, where $h_S \in \underset{h\in{\cal H}}{\argmin}L_S(h)$.
Union Bound: For any two sets $A$, $B$ and a distribution $\cal D$ we have ${\cal D}(A\cup B) \le {\cal D}(A) + {\cal D}(B)$
${\cal D}^m(\{S\mid_x : L_{({\cal D}, f)}(h_S) > \epsilon\}) \le |{\cal H}|e^{-\epsilon m}$